organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

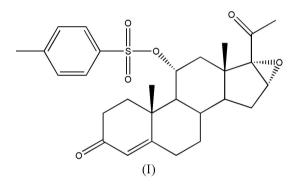
Qiang Nie,* Jing-Kang Wang, Shi Wang and Mei-Jing Zhang

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

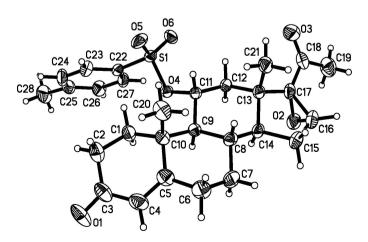
Correspondence e-mail: nie_qiang80@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.046 wR factor = 0.104 Data-to-parameter ratio = 18.1


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

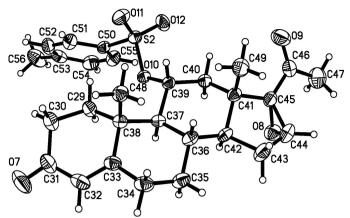
16*a*,17-Epoxy-11*α*-(*p*-tolylsulfonyloxy)pregn-4-ene-3,20-dione


The title compound, $C_{28}H_{34}O_6S$, is an important intermediate in the synthesis of hormone pharmaceuticals. In the crystal structure, the asymmetric unit consists of two molecules. Received 19 January 2005 Accepted 4 March 2005 Online 11 March 2005

Comment

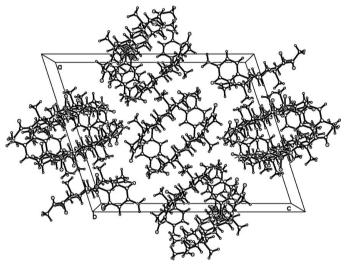
The title compound, (I), is an important intermediate in the synthesis of hormone pharmaceuticals, such as fluocinonide (Xu, 2001). It was first prepared from 11α -hydroxy- 16α ,17-epoxyprogesterone by sulfonation with *p*-toluenesulfonyl-chloride (Camerino *et al.*, 1959), but the crystal structure was not reported.

In the crystal structure, the asymmetric unit consists of two molecules (Figs. 1 and 2). Ring A is in a 1 α -sofa conformation, rings B and C are in nearly perfect chair conformations and ring D is in a 14 α -envelope conformation. The presence of the three-membered ring constrains ring D to have a 14 α -



The molecular structure of molecule 1 of (I), showing the atom-labelling

scheme. Displacement ellipsoids are drawn at the 30% probability level.


Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

The molecular structure of molecule 2 of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3

The molecular packing of (I), viewed along the b axis.

envelope conformation (Goubitz et al., 1984). The two molecules in the asymmetric unit have similar conformations.

Experimental

 11α -Hydroxy- 16α ,17-epoxyprogesterone (1 g; provided by Tianjin Tianyao Pharmaceutical Co. Ltd) was dissolved in pyridine (20 ml) and treated with p-toluenesulfonyl chloride (0.6 g) at room temperature overnight. The product was chromatographed on silica gel and recrystallized from acetone-hexane three times. The melting point, determined by differential scanning calorimetry, is 443.2 K with decomposition. Colourless plate-like single crystals suitable for X-ray diffraction were obtained by slow evaporation of a chloroformmethanol solution (1:1, 10 ml) at room temperature.

Crystal data

$C_{28}H_{34}O_6S$	$D_x = 1.288 \text{ Mg m}^{-3}$
$M_r = 498.61$	Mo $K\alpha$ radiation
Monoclinic, C2	Cell parameters from 2920
a = 19.508 (2) Å	reflections
b = 10.731(1) Å	$\theta = 2.3 - 19.4^{\circ}$
c = 25.920 (4) Å	$\mu = 0.17 \text{ mm}^{-1}$
$\beta = 108.666 \ (2)^{\circ}$	T = 293 (2) K
$V = 5140.8 (11) \text{ Å}^3$	Thick plate, colourless
Z = 8	$0.26 \times 0.22 \times 0.12 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	11 583 independent reflections
diffractometer	7085 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\text{int}} = 0.029$
Absorption correction: multi-scan	$\theta_{\text{max}} = 28.0^{\circ}$
(<i>SADABS</i> ; Sheldrick, 1997)	$h = -19 \rightarrow 25$
$T_{\min} = 0.927, T_{\max} = 0.980$ 17 613 measured reflections <i>Refinement</i>	$k = -13 \rightarrow 14$ $l = -34 \rightarrow 31$
Refinement on F^2	$(\Delta/\sigma)_{max} = 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.046$	$\Delta\rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.104$	$\Delta\rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$

S = 1.0111583 reflections 639 parameters H-atom parameters constrained $w = 1/[\sigma^2 (F_0^2) + (0.0375P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: none Absolute structure: Flack (1983), 4824 Friedel pairs

Flack parameter: 0.08 (5)

H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C-H distances of 0.93-0.98 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. The refinement of the Flack (1983) parameter confirms that the chiral centres retain their original configurations during the synthesis, as expected.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge support from the SRCICT of Tianjin University and the materials afforded by Tianjin Tianyao Pharmaceutical Co. Ltd.

References

- Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Camerino, B. & Sciaky, R. (1959). Gazz. Chim. Ital. 89, 663-673.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Goubitz, K., Schenk, H. & Zeelen, F. J. (1984). Steroids, 44, 153-158.
- Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xu, G. (2001). The Handbook of the Intermediate of Medicine II, p. 154. Beijing: Chemical Industry Press.